How Computer Simulation Can Power Innovation

This week’s post was written by Frank Ding, Engineering Analysis & Technical Computing Manager at Simpson Strong-Tie. 

Computer-simulated product testing is being used increasingly in modern engineering and manufacturing because it provides a low-risk, time- and cost-efficient means of modeling system performance using a wide array of variables before a physical prototype has been created. The following Blog post outlines some of the uses and advantages of integrating this technology into the product development process.

The role of test simulation in product design might not be the general focus of the Structural Engineering Blog. However, you may have noticed that computer simulation plots have been cited in a few previous postings. Nowadays, it’s rare to talk about product development without mentioning computer simulation at some point. The aim of this post is to give you a better sense of how test simulation can benefit product development and innovation.

Simpson Strong-Tie is a manufacturing company specializing in structural product solutions. Product innovation has been key to the company’s success ever since the production of the first joist hanger in 1956 by the company founder, Barclay Simpson. And with increasing competition and market pressure, product innovation becomes ever more critical to the company’s bottom line.

The ultimate goal of product development is to produce the best design as efficiently as possible. At Simpson, physics-based computer numerical modeling and simulation already form a key tool in our design process. Research published by the Aberdeen Group in 2014 reported that best-in-class companies were leading the way in utilizing simulation software to arm their employees with the insight needed to develop and optimize today’s products.

Finite element analysis (FEA) tools have been an essential component of any engineer’s toolbox for years. The ability to create a virtual prototype or realistic representative model of a part or assembly before physical prototyping offers companies a much faster product development path than was previously possible. Most of the time, simulation is used early in the design cycle to investigate a set of predetermined candidate designs — in which it has proven to be a more efficient method than running physical tests alone for isolating the best design. At other times, simulation is used alongside physical validation tests to determine whether the design meets specifications and to explore potential failure modes.
How can simulation power innovation?

When Thomas Edison was asked about finding success amidst failure, he stated, “If I find 10,000 ways something won’t work, I haven’t failed. I am not discouraged, because every wrong attempt discarded is another step forward.”

With computer simulation, one can evaluate many design concepts in a shorter time than one can with physical prototyping. A virtual test workflow drastically reduces the design, prototype and test cycle that are required in a typical product innovation process. For example, a typical concrete product development cycle involves a long process of concrete pouring, curing and producing physical prototypes. The physical design iteration cycle could take months, whereas a simulation design cycle may take only a couple of weeks.

Another key part of the virtual design process is to try out many variations of design parameters in “what if” scenarios once the computer simulation model is validated and designers have the confidence to use simulation results to guide design decisions. With more and more affordable, high-performance computing power available from cloud or onsite servers, more complex simulations can be performed at a given time. As a result, a faster cycle of virtual trials speeds up the entire product innovation process. In many cases, hundreds of design concepts are virtually tested before physical prototyping begins.

Besides improving the speed of development and cutting costs, simulation also helps improve product quality. For example, the global and detailed aspects of product performance can be identified and measured easily using simulation. The insight gained from simulation can be used to troubleshoot product failure and optimize the design.

Simulation enables us to develop new products in a virtual environment built on real-world data with much lower cost or risk. Simulation is already an essential part of the innovation process. Simulation is powering modern manufacturing innovation. We will see this trend accelerate further in the future.

The post How Computer Simulation Can Power Innovation appeared first on Simpson Strong-Tie Structural Engineering Blog.

from Simpson Strong-Tie Structural Engineering Blog http://seblog.strongtie.com/2017/12/computer-simulation-can-power-innovation/

Advertisements

My Engineering Adventures with Build Change

This week’s post was written by James P. Mwangi, Ph.D., P.E., S.E. – our first annual Simpson Strong-Tie Engineering Excellence Fellow with Build Change. 

Let me start by wishing everyone a happy holiday season.

My fellowship activities started in July 2017. I spent two weeks in New Jersey getting oriented to the Build Change organization and engineering activities around the world. I then spent two days in Pleasanton getting to meet the engineering team and getting updated on Simpson Strong-Tie products and the team leaders.

In August, I headed to my first assignment in Indonesia. My tasks were:

  • Work with the Build Change technical team in Indonesia to review the school building design guidelines and make recommendations to the government on their adherence to the design codes.
  • Prepare construction documents for a retrofit of a typical five-classroom school building.
  • Visit school sites and select a school building that is a typical candidate for retrofitting whose retrofit scheme can be replicated at other school sites.
  • Work with the Better Building Materials team to find out ways to make quality clay bricks economically.
  • Provide mentorship (in capacity building) to the engineering team.

The first thing I had to do was to translate the documents to be reviewed from Bahasa Indonesia (a language I had never heard spoken before) to English – Thanks to Google document translator! I was based in Padang, West Sumatra. I am used to long flights from California, but getting to Padang (+14 hour time difference) was very long. Indonesia is the fourth most populous country in the world (after China, India and USA), comprising more than 17,000 islands of which only 6,000 are inhabited.

My team accomplished the following during the two months I was in Indonesia:

  1. Reviewed and provided comments on the Ministry of Education’s School Construction Guidelines for both new and existing buildings and included sketches, details, supporting calculations, etc.
  2. Reviewed and provided comments on the National Disaster Risk Management Agency’s School Design Guidelines.
  3. Reviewed the Minister of Public Works No. 45 / PRT / M /2007’s Technical Guidelines for the Development of Buildings.
  4. Reviewed the National Standardization Agency (SNI) Planning Procedures for the Earthquake Resistance of Buildings and Non-Building Structures in order to ascertain that the SNI’s school building design requirements are incorporated in the design guidelines of items 1–3 above.
  5. Provided a Report of Build Change comments and suggestions, with explanations, on the Ministry of Education’s School Construction Guidelines for both new and existing buildings and the National Disaster Risk Management Agency’s School Design Guidelines.
  6. Provided construction documents, materials list and cost estimate for a typical example new school building. This was a prototype classroom building that incorporated the comments from the reviewed school building design guidelines.
  7. Provided construction documents, calculations, bill of quantities and cost estimate for the retrofit of the five-classroom building in SD42 school.
  8. Visited and selected a possible school for the next retrofit project. The schools visited were the ones with highest need (most vulnerable, have most students, representative of most common school buildings). Fundraising efforts are underway to finance the retrofit of the selected representative school building.
  9. Went to the field with the Better Building Materials team and visited the clay brick making and firing kilns. Suggested possible changes in the kilns and alternative fuels (from firewood) to make better-quality bricks and make the process more environmentally friendly, more sustainable and more economical.
  10. Conducted hands-on brick wall sample construction activity for the Build Change technical team to illustrate quality mortar mix and the correct mortar thickness for both bed and head joints.
  11. Moderated technical team presentations given to the communities and made suggestions on how to improve the technical content of those presentations.

The climate in Padang was humid, hot and rainy almost every day I was there. I was amazed by how friendly the people were, even though I could not communicate with them directly (very few speak English). If you think you can handle spicy food, you have not tasted Padang food. Most of the food is served cold, but everyone sweats a lot as they eat. I was also lucky to have time to visit historical Minag chief’s palace and enjoy great snorkeling in one of the private islands.

James with school children

James with school children

James with school children

James with school principal

Poor wall construction method

Poor wall construction detail and use of smooth rebar

James making clay bricks

Brick kiln

Brick kiln

Inside brick kiln collecting samples for testing

Sample brick-wall building

James at Minag Chief’s palace

James at Cubadak Island

My second country and current assignment is Colombia. I arrived here in mid-October, having spent two weeks in California after Indonesia. I spent one week in Bogota, and now I am in Medellin, which is going to be my base for the next few months. The food here is not very different from what I get in my home town of Paso Robles, California. The climate in Medellin is pleasant and sightly warmer than in Bogota, which is at a much higher elevation. In both Bogota and Medellin, more than 80% of the respective city populations live in informal housing. These are homes built with low-quality materials, are not engineered and follow no building design or construction guidelines. The informal housing sector is mostly located in very steep mountain slopes and the homes are constructed over time, sometimes reaching four or five stories using unreinforced masonry clay tile blocks.

I have embarked on the following activities:

  1. Review and comment on Build Change’s Manual of Evaluation and Seismic Strengthening for Vulnerability Reduction in Housing. This manual has been approved by the building departments in Bogota and Medellin for evaluating existing informal housing and as a guide to retrofitting vulnerable buildings and reducing their damage in future earthquakes.
  2. Coordinate with three universities (two in Bogota and one in Medellin) on full-scale testing of the wall systems used in the informal housing in order to get correct design parameters to use in the Build Change manual update. The walls will be tested for in-plane and out-of-plane (shake table) load conditions. Different wall conditions such as plaster on one or both sides, plaster with wire mesh on one or both sides, etc., will also be tested. Nonlinear building analysis will be carried out using results from the tests in order to access the effectiveness of incremental retrofit schemes such as only adding a ring beam, only providing plaster on one side, etc.
  3. Help with the training of building professionals (civil engineers, architects, project managers) from the Medellin Social Institute for Housing and Habitat (ISVIMED) on how to implement the Build Change Manual both in the classroom and in the field as a form of capacity building in the two cities.

The work has started, and it keeps us very busy. But I have also had a chance to get out of the city and scale all 747 steps of the 650-foot-tall Piedra del Peñol, “Rock,” in Guatapé, located 50 miles east of Medellin.

James at Julio Garavito University, Bogota

James at Julio EAFIT University, Medellin

Urban housing in Bogota

Urban housing in Medellin

James on his way to the “Rock”

James at the “Rock”

If you’re curious, don’t hesitate to contact me at james@buildchange.org before my Fellowship year ends to find out what part of the world I’m in at the time.

The post My Engineering Adventures with Build Change appeared first on Simpson Strong-Tie Structural Engineering Blog.

from Simpson Strong-Tie Structural Engineering Blog http://seblog.strongtie.com/2017/12/engineering-adventures-build-change/

Simplify Access to Your Drawings with the Simpson Strong-Tie AutoCAD® Plugin

This week’s post was written by Carolyn O’Hearn, Software and App Marketing Manager at Simpson Strong-Tie.

Accessing engineering drawings, determining whether you have the right ones and loading them into AutoCAD can seem like an exhausting endeavor. Wouldn’t it be nice to have an application that does everything you need in one package? An application that will also save you time, on both retrieval and installation, and give you access to additional applications? Simpson Strong-Tie has developed a new tool that can take care of all these needs.

Figure 1. Simpson Strong-Tie AutoCAD Plugin — Drawing Finder.

We want to make it easier for you to retrieve your drawings without using up valuable design time switching applications. We’ve made substantial improvements to our AutoCAD tools by creating a plugin that now integrates the familiar functionality of our Drawing Finder into our legacy AutoCAD Menu so you can now download drawings, and store only the drawings you need, without ever leaving AutoCAD.

From the menu, the Downloaded drawings area allows you to quickly view all the drawings that you’ve previously downloaded. (See Figure 2.) We’ve also built in a feature that will allow you to customize our drawings and save them to this area as well.

Figure 2. Simpson Strong-Tie AutoCAD Plugin — Menu.

Need to use some other Simpson software in your design? Click the Other applications button in the menu to be taken to our Software and Web Applications page on our website.

The AutoCAD Plugin also solves installation problems you may have experienced with the AutoCAD Menu. We understood it was a time-consuming process to download all of our drawings and that the installation wasn’t as easy as we would like it to be. We’ve eliminated that barrier by building a plugin that connects you directly to the Drawing Finder from inside of AutoCAD with an installer that works the way you would expect. This allows you to download only those drawings that are applicable to the design you are working on. And every drawing you download is automatically stored for quick reference later. With these features combined, your design process is now streamlined!

One more benefit of the AutoCAD Plugin is our ability to add or change drawings in Drawing Finder and update them dynamically on both the tool and our website immediately. You no longer have to install and update a new version with every change. And if you ever run into an issue or need to request additional drawings from the website, you can now use our Help button on the tool to send a request directly to the support team for this specific application.

AutoCAD LT does not support the installation of plugins, therefore our Plugin cannot be installed in LT versions of AutoCAD. However, the content available in our browser based Drawing Finder is the exact same as in the plugin.

Start experiencing our new AutoCAD Plugin today at https://www.strongtie.com/drawing/autocad-drawing-menu. to experience the ease of use and faster designing process we now offer.

If you have questions, please use this simple form to send the team your input.

The post Simplify Access to Your Drawings with the Simpson Strong-Tie AutoCAD® Plugin appeared first on Simpson Strong-Tie Structural Engineering Blog.

from Simpson Strong-Tie Structural Engineering Blog http://seblog.strongtie.com/2017/11/simplify-access-drawings-simpson-strong-tie-autocad-plugin/

Turkeys and Gratitude

This week’s post was written by Kari Martin, Marketing Communications Content Manager at Simpson Strong-Tie. 

There are a couple of turkeys that like to hang out around our home office in Pleasanton and, no, I’m not referring to any of my colleagues — we actually have a gang of wild turkeys that comes up from the creek behind the office. Almost every day, these colorful birds feel safe enough to stroll onto the office walkway pecking for food outside our office windows and doors. It’s surprising to me that these beautiful creatures could be so fearless (or is it simply naïve?), especially around Thanksgiving time. Their presence reminds me that being fearless is important, because nothing new would ever be discovered if we were too afraid to venture outside our comfort zones.

The beauty and strangeness of the turkeys also remind me to be thankful, because everything we have in life is ultimately a gift. Their consistent return to our office is a gentle reminder as I walk into work to give thanks to you, our readers, our customers and our partners every day. Thank you!

We hope you enjoy the holiday with your family and friends. We’ll be back with another post next week.

The post Turkeys and Gratitude appeared first on Simpson Strong-Tie Structural Engineering Blog.

from Simpson Strong-Tie Structural Engineering Blog http://seblog.strongtie.com/2017/11/turkeys-and-gratitude/

A New Way to See Whether FRP Is Right for Your Project

This week’s post was written by Griff Shapack, FRP Design Engineer at Simpson Strong-Tie. 

Specifying our Composite Strengthening Systems™ (CSS) is unlike choosing any other product we offer. In light of the unique variables involved with selecting and using fiber-reinforced polymer (FRP) solutions, we encourage you to leverage our expertise to help with your FRP strengthening designs. To get started, we first need to determine whether FRP is right for your project. The fastest way to do that is for you to fill out our Design Questionnaire. Our new Excel-based questionnaire collects your project information and helps you use the existing capacity check to evaluate whether or not FRP is suitable for your project per the requirements of ACI 562-16 Section 5.5.2. After the feasibility study, the questionnaire creates input sheets specifically for your project.

Getting Started

Step 1

Open the FRP Design Questionnaire spreadsheet using Microsoft Excel. If a yellow warning appears at the top of the sheet, click “Enable Content” to ensure that the workbook will function properly. You will start on the worksheet tab named “Main”. “Main” will be the only worksheet tab when you begin, but more worksheet tabs will be created as you use the spreadsheet.

Step 2

Enter the project information and your contact information in Section 1 of the worksheet. The contact information should be for the Designer that you would like Simpson Strong-Tie to work with for this project’s FRP design. See Figure 1.

Step 3

Enter the FRP strengthening information in Section 2 of the worksheet. If the application will require an existing capacity check, an input form requesting the information needed for the check will appear in Section 3 of the worksheet.

Figure 1. Project information and FRP strengthening information.

Step 4                                                                                                                        

For members that support gravity loads, an existing capacity check must be performed to verify that FRP strengthening is suitable before a design can be generated. For these members, the spreadsheet will generate a check table for you in Section 3 of the worksheet. Enter the number of members to be checked and the dead load (D), live load (L) and snow load (S) for each member. Use consistent units for the input. See Figure 2. The spreadsheet will calculate the demand-to-capacity ratio (DCR) for each member. The ratio must be less than or equal to 1.0.

  1. A result of “OK” means the existing capacity check is passed. Proceed to Step 5 below.
  2. A result of “NG” (no good) means the existing capacity check is failed and FRP strengthening is not likely to be suitable. However, consider contacting Simpson Strong-Tie about your design condition to ensure that this is the case.

Figure 2. Existing capacity check.

Step 5

You are now ready to create an element input worksheet for those members that passed the existing capacity check. Click “FRP Questionnaire” from the Excel menu bar. Then click the “Input Sheet” button in the ribbon bar. See Figure 3.

Figure 3. “Input Sheet” button.

This will create an element input worksheet as a new worksheet tab. See Figure 4.

Figure 4. Element input worksheet.

Enter the number of elements to be checked and fill in the design information for each member. The “No. of elements” cell features a drop-down menu with the numbers 1–5, but any number can be typed into the cell. (Each member should have passed the existing capacity check in Step 4.) See Figure 5.   

Figure 5. Element input worksheet.

Step 6

If you would like to add different member types that need to be strengthened, click “Another Type of Strengthening” button in the ribbon bar. See Figure 6. This will create a new “Main” worksheet. Repeat the steps above, until all strengthening types and member data have been entered.

Figure 6. “Another Type of Strengthening” button.

 Step 7

When you have finished inputting all required data, save the spreadsheet file and email it to css@strongtie.com. You should expect confirmation of receipt from us within one business day.

From there, if FRP is a viable option, you can decide to utilize our no-cost, no-obligation design services. Our team will design a unique solution specifying the most cost-effective CSS products that address your particular needs. The design calculations, drawings, notes and specifications are prepared by Simpson Strong-Tie Engineering Services and can then be incorporated into the design documents that you submit to the building official.

Don’t know which FRP solution is the right one for you? We do. Give our new Design Questionnaire a try, and let us be your partner during the project design phase. Learn more at strongtie.com/products/rps/css/frp-engineering-design.

Advanced FRP Design Principles

In this free webinar we will dive into some very important considerations including the latest industry standards, material properties and key governing limits when designing with FRP.


WATCH NOW!

The post A New Way to See Whether FRP Is Right for Your Project appeared first on Simpson Strong-Tie Structural Engineering Blog.

from Simpson Strong-Tie Structural Engineering Blog http://seblog.strongtie.com/2017/11/new-way-see-whether-frp-right-project/

AC398 Now Includes Moment Evaluation of Cast-in-Place Post Bases

This week’s post was written by Jhalak Vasavada, Research & Development Engineer at Simpson Strong-Tie.

When we launched our new, patent-pending MPBZ moment post base earlier this year, the evaluation of the moment capacity of post bases was not covered by AC398 – or by any other code, for that matter. There wasn’t a need – there were no code-accepted connectors available on the market for resisting moment loads.

We proposed adding moment evaluation to the AC398 and presented our research to the ICC-ES committee in June. After a thorough review, which included a public hearing, the provision was approved. Here are some details about the revisions to this acceptance criteria.

What is AC398?

AC398 is the Acceptance Criteria for cast-in-place cold-formed steel connectors in concrete for light-frame construction.

Acceptance criteria are developed to provide guidelines for demonstrating compliance with performance features of the codes referenced in the criteria. ICC-ES develops acceptance criteria for products and systems that are alternatives to what is specified in the code, or that fall under code provisions that are not sufficiently clear for the issuance of an evaluation report.

The criteria are developed through a transparent process involving public hearings of the ICC-ES Evaluation Committee (made up entirely of code officials), and/or online postings where public comments were solicited.

How is the moment load evaluated?

The MPBZ moment post base is a cast-in-place post base designed to resist uplift, download, lateral and moment forces. This blog post in February describes how it works, how it was tested and includes a design example. Since the MPBZ falls under the specialty inserts category of cast-in anchorage, it is not covered by the provisions of chapter 17 of ACI 318-14. Therefore, the MPBZ was evaluated based on AC398 for anchorage to concrete.

Our engineers worked closely with ICC-ES and the American Wood Council to develop evaluation criteria for moment. This revision to the criteria for moment evaluation and testing was posted for public comments on the ICC-ES website, and then presented by our engineers at the ICC-ES committee hearing last June. The presentation included the design, use, testing and load rating of the MPBZ. Following the hearing, and a thorough review, the committee approved the proposed revision to AC398.

What are the revisions to AC398?

With reference to moment evaluation, a few of the key changes to AC398 are:

  1. Moment Anchorage Strength: Similar to tension and shear anchorage strength, the available moment anchorage strength shall be determined using the equation

Where F = applied horizontal test force used to determine moment strength (lbf)

D = vertical distance from top of concrete member to the applied lateral test force F (ft.) (moment arm)

Other terms are as previously defined for tension and shear anchorage strength equations.

  1. Rotation: Testing of moment base connectors subject to an applied moment shall include measurement and reporting of the connector rotation as determined by the relative lateral displacement of gauges positioned 1″ and 5″ above the top of the connector.
  2. Side Bearing: Testing of moment base connectors that rely on bearing of the wood member against the side of the connector to resist moment loads shall address wood shrinkage.

Learn more about the MPBZ in our free upcoming webinar.

Join us live on December 6 for an interactive webinar on the MPBZ moment post base, its evaluation, its testing and its applications. In this webinar, we will discuss MPBZ moment post base product features, product development, design examples and much more. Attendees will also have an opportunity to ask questions during the event. Continuing education units will be offered for completing this webinar. Register today here.

Upcoming free MPBZ webinar.

Join Simpson Strong-Tie R&D engineer Jhalak Vasavada, P.E., and Simpson Strong-Tie product manager Emmet Mielbrecht for a lively and informative discussion of this new product.


REGISTER TODAY

The post AC398 Now Includes Moment Evaluation of Cast-in-Place Post Bases appeared first on Simpson Strong-Tie Structural Engineering Blog.

from Simpson Strong-Tie Structural Engineering Blog http://seblog.strongtie.com/2017/11/ac398-now-includes-moment-evaluation-cast-place-post-bases/

Beat Building Drift with the New DSSCB Drift Strut Slide Connector from Simpson Strong-Tie

This week’s post was written by Clifton MelcherSenior Product Manager at Simpson Strong-Tie.

Structural engineers concerned with building envelopes are always looking for better solutions that help isolate the cladding from the primary structure in conditions where large building drift is a concern. Simpson Strong-Tie has an answer with a unique and innovative solution, the new DSSCB (drift strut sliding clip bypass).

The DSSCB is used to anchor cold-formed steel framing to the primary structure in bypass applications. The DSSCB is a clip that slides inside standard struts that most engineers and contractors are already familiar with. These struts will typically be attached to structural steel. However, there is also a cast-in-place strut option referred to as a strut insert. Many different manufacturers of these struts exist, but three common manufacturers are Unistrut®, PHD and B-line. The strut and strut insert requirements for the DSSCB can be found in the Simpson Strong-Tie DSSCB flier (F-CF-DSSCB17).

The DSSCB has many design features that make it easy to use, cost-effective and designer-friendly.

  • The DSSCB clip has uniquely formed inserts that twist into place easily with minimal friction
  • The clip features squaring flanges that help keep the clip square inside the strut
  • Shoulder screws (included) prevent over-drilling and increase overall capacity
  • Pre-engineered design offers clip, strut and anchorage solutions
  • Pre-punched slots provide a full 1″ of both upward and downward deflection
  • Sight lines facilitate proper screw placement

The DSSCB is also a hybrid clip and accompanies both slide applications as well as fixed applications. In addition to vertical slots, the clip also has round circular holes for fixed-clip conditions. This will make the clip more versatile and limit inventory.

Another great use for this product is for panelized construction. The DSSCB makes it a snap to anchor finished panels to the slab without having to waste time drilling and installing anchors. Locking panels into place is also simple with a DSHS connector clip that can be easily slid into place and attached with only one (1) #10 screw.

Accommodating for building drift and commercial panel construction just got easier with the Simpson Strong-Tie DSSCB!

Design Example

Load required at bypass slide condition attached to steel with ASD reactions of 450 lb. tension (F2) and 422 lb. compression (F3) – based on CFS DesignerTM software or hand calculations

Stud member = 600S162-43 33 ksi at 16″ o.c. – based on CFS Designer software or hand calculations

Per page 4 of the DSSCB flier (F-CF-DSSCB17), allowable F2 = 785 lb. and F3 = 940 lb. for slide-clip connector (shown below)

Per page 7 of the DSSCB flier (F-CF-DSSCB17) allowable loads of F2 = 475 lb. and F3 = 2,540 lb. for strut allowable anchorage with 1″ weld at 12″ o.c. using a 13/16″ strut (shown below)

Note that, at a strut splice (if required), maximum load is not to exceed F2 of 865 lb. per note 6 on page 7 (shown below)

6.  For any connector occuring within 2″ of channel strut splice, load not to exceed — F= 865 lb. and F= 785 lb.

Check connector and strut/anchorage:

F2 (tension):                           Pmax = 450/ minimum of (785,475) = 0.95 < 1 ok

F3 (compression):               Pmax = 422/ minimum of (940,2540) = 0.45 < 1 ok

FAQs:

Q: How are the products sold?

A: The clips are sold in kits of 25. For the DSSCB43 and DSSCB46, one polybag of 83 screws is included. For the DSSCB48, two 55 screw polybags are included. The DSHS will be sold separately from the clips and come in bags of 100. The struts will not be sold by Simpson Strong-Tie.

Q: Can I use the 1 5/8″ x 1 5/8″ strut for the fixed-clip application?

A: No, the fixed-clip application was tested only with the 13/16″ x 1 5/8″ strut. The 1 5/8″ x 1 5/8″ strut would overhang more, which we calculate could reduce capacities.

Q: When should I use the DSHS clip?

A: The DSHS clip should be used where you want to fix the clip in place in the F1 (in-plane) direction. This clip will most likely be used for panelizing, but could be used for stick framing as well when adjustment is required before locking the clip in place.

Q: Why are there two tables that I need to use to determine my connector capacity?

A: One table is for the capacity of the clip, and the other table is for the capacity of the strut/anchorage. Two tables give the designer more flexibility in the design as well as an understanding of what is controlling the failure.

Q: How do I accommodate load requirements at a strut splice?

A: Note 6 to the Strut Channel Allowable Anchorage Loads to Steel table states the capacity of the strut with a clip directly at the splice. The values are based on assembly testing. Refer to page 7 of the flier.

Q: How do I accommodate load requirements at the strut end?

A: Note 10 to the Strut Channel Allowable Anchorage Loads to Steel table states that the connector load is to be located a minimum of 2″ from the end of the strut channel. Note 2 to the Concrete Insert Allowable Load Embedded to Concrete table gives a reduction capacity for end conditions. Reference pages 7 and 8 of the flier.

Q: Why do we show an F1 load on a drift clip?

A: The drift clip without the DSHS does not support any load in F1 direction. F1 load is only supported if a DSHS clip is used in conjunction with the DSSCB clip. This is also noted (note 4) on the DSSCB Allowable Slide-Clip Connector Loads and the DSSCB Allowable Fixed-Clip Connector Loads tables. Refer to pages 4 and 6 of the flier.

Q: How do I accommodate higher concentrated loads at jambs exceeding my typical stud loads?

A: Note 7 to the Strut Channel Allowable Anchorage Load to Steel table gives the capacity of the strut/anchorage if the strut is welded directly at the clip. Refer to page 7 of the  flier.

Q: Can I drive PAFs into my strut?

A: No. The shot pin tool will not fit inside the strut channel.

Q: If I want to attach my strut to the steel edge angle with screws, what brand should I use?

A: Simpson Strong-Tie makes great fasteners, and we would recommend these fasteners (#12-24 Strong-Drive® Self-Drilling X Metal screw). However, you can use any brand fastener provided they meet our Pss and Pts capacities minimum nominal strength values in General Notes for Allowable Connector Load Tables on page 8 of the flier.

Q: At a double-stud condition, is it acceptable to double the capacity if I use two (2) clips?

A: It is acceptable to double the capacity of the DSSCB slide-clip or fixed-clip table loads (pages 4 and 6 in flier). However, the load should not exceed the load listed in the Strut Channel Allowable Anchorage Loads to Steel table (page 7 in flier). If a load is exceeded, please follow note 7 on page 7 of the flier by adding a weld connection directly at the concentrated load. This will allow you to have a wider anchor spacing for your typical studs and only reinforce the higher concentrated loads with connections directly at these locations.

The post Beat Building Drift with the New DSSCB Drift Strut Slide Connector from Simpson Strong-Tie appeared first on Simpson Strong-Tie Structural Engineering Blog.

from Simpson Strong-Tie Structural Engineering Blog http://seblog.strongtie.com/2017/11/beat-building-drift-new-dsscb-drift-strut-slide-connector-simpson-strong-tie/